Back to stack
Dec 30, 2025
4 min read

WoNQ Matrix – Validation Framework

Comprehensive testing framework running 90 configurations across sensitivity and cycle combinations

WoNQ Matrix

The WoNQ Matrix is QonQrete’s comprehensive validation framework that tests every combination of sensitivity levels and cycle counts to ensure production readiness.

What It Tests

The matrix runs QonQrete across:

  • 10 sensitivity levels (0-9)
  • 9 cycle counts (1-9)
  • = 90 unique configurations

Each configuration is tested with a complex real-world project to validate:

  • Pipeline completion
  • Code quality
  • Syntax validation
  • Import resolution
  • File structure

Test Project

The validation uses a complex multi-file Python project as the benchmark:

Test Project: QommandahQeen Game Engine
━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━
- 104KB specification
- 6 enemy types with AI behaviors
- Custom sprite asset generation
- Physics system
- Level editor
- Save/load functionality

Scoring System

Each run is scored based on:

MetricWeightDescription
Completion30%Did all cycles complete?
File Count20%Correct number of files generated
Syntax Pass25%All files pass syntax validation
Import Success15%All imports resolve correctly
Structure10%Correct directory structure

Maximum Score: 666 (because we’re WONKY like that 🔥)

v1.0.0 Results

╔═══════════════════════════════════════════════════════════════╗
║                 WoNQ MATRIX RESULTS                           ║
╠═══════════════════════════════════════════════════════════════╣
║ Total Runs:           90 (100% coverage)                      ║
║ Clean Completions:    90 (100% success)                       ║
║ Champion Score:       658 (sensitivity=3, cycle=7)            ║
║ Global Average:       554                                     ║
║ Scores ≥600:          35.6%                                   ║
╚═══════════════════════════════════════════════════════════════╝

Heatmap Analysis

The matrix produces a heatmap showing optimal configurations:

         Cycles →
         1    2    3    4    5    6    7    8    9
    ┌────────────────────────────────────────────────
  0 │ 380  420  455  490  510  540  520  450  480
  1 │ 395  435  470  505  530  560  545  470  495
  2 │ 410  450  490  525  555  590  580  500  520
S 3 │ 420  465  505  540  575  620  658  520  545  ← CHAMPION
e 4 │ 415  455  495  530  560  595  610  505  530
n 5 │ 400  440  480  515  545  575  590  490  515
s 6 │ 385  420  460  495  525  555  565  475  500
↓ 7 │ 365  400  440  470  500  530  545  460  485
  8 │ 340  375  410  445  475  505  520  445  465
  9 │ 310  340  375  410  440  470  490  420  445

Key Findings

1. Sweet Spot: Sensitivity 2-4, Cycles 5-7

Best performing zone with consistent 580+ scores

2. Champion Configuration

briq_sensitivity: 3
auto_cycle_limit: 7
# Score: 658/666 (98.8%)

3. Death Valleys

- Cycle 8: Consistent underperformance across all sensitivities
- Sensitivity ≥7: Diminishing returns, too few briqs

4. Quick Win Zone

Sensitivity 7, Cycles 4: Good results with minimal cost
Score: 530 average, ~$0.50 per run

Running the Matrix

# Full matrix (takes ~4 hours, costs ~$50)
python tools/wonq_matrix.py --full

# Quick validation (9 key configs, ~30 min, ~$5)
python tools/wonq_matrix.py --quick

# Single config test
python tools/wonq_matrix.py --sens 3 --cycles 7

Output Files

The matrix generates:

wonq_results/
├── matrix_heatmap.png     # Visual heatmap
├── matrix_scores.csv      # Raw scores
├── matrix_summary.md      # Analysis report
└── runs/
    ├── sens0_cyc1/        # Individual run outputs
    ├── sens0_cyc2/
    └── ...

Configuration

# wonq_config.yaml
matrix:
  sensitivities: [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
  cycles: [1, 2, 3, 4, 5, 6, 7, 8, 9]
  test_project: "qommandahqeen"
  provider: "gemini"
  model: "gemini-2.5-flash"
  parallel_runs: 3

Introduced In

v1.0.0-stable - December 30, 2025

Historical Context

The WoNQ Matrix was developed to validate QonQrete before the v1.0.0 production release. It confirmed:

  • 100% completion rate across all configurations
  • Optimal default settings (sens=7, cycles=4)
  • Provider compatibility across all supported AI models